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Abstract

In recent years, the creation and manipulation of 3D objects
have gained prominence in numerous sectors, from enter-
tainment over interior design to manufacturing. Building
on the universal nature of sketches, we present a pipeline
that can generate 3D objects from 2D sketches. Our ap-
proach uses an encoder to map a single-view hand-drawn
sketch into the DeepSDF latent space. From there, we lever-
age differentiable sphere tracing on silhouette maps to re-
fine and improve the 3D shape. Our method outperforms a
retrieval baseline and allows for interactive editing of the
shape during the generation process. Code is published at
https://github.com/robinborth/sketch2shape.

1. Introduction
Sketches are one of the most fundamental and easy ways to
draw real-world objects. Humans effortlessly interpret sim-
ple sketches to envision 3D objects, showcasing their intu-
itive understanding of the world. In contrast, sketch-based
reconstruction faces challenges due to the absence of any
geometric information. Furthermore, ambiguity in sketches
with respect to different views [11] makes accurate 3D re-
construction difficult. Approaches include predicting the
view [11] or specifying it as input [12], though this may hin-
der creativity. Another challenge is the domain gap between
computer-generated and hand-drawn sketches [7,11], due to
the absence of a high-quality hand-drawn sketch dataset.

We present an approach to generate shapes by leverag-
ing a combination of a view-agnostic encoder that maps
sketches into DeepSDF latent space and a differentiable ren-
dering pipeline based on multi-view silhouettes to optimize
the DeepSDF latent vector at inference. The view-agnostic
encoder should make it easier for artists to not restrict their
creativity by constraining them to sketch from a specific
view or provide exact view information of the sketch. The
generated multi-view silhouettes allow us to optimize and
refine invalid shapes at inference. As a result, our method
enables artists to interactively edit and manipulate the sil-
houettes during test-time optimization from both single- or
multiple views.

2. Related Work
Sketch-based modeling has been an active topic of research
for a long time [10]. Recently, neural architectures dom-
inated the field, using an encoder-decoder architecture to
model 3D shapes. Sketch2Model [11] uses two different
latent spaces for view and shape to resolve the view ambi-
guity in hand-drawn sketches. Sketch2Mesh [7] extracts
contour lines of sketches or also real drawings and opti-
mizes the mesh using differentiable rendering. This also
allows them to edit shapes after generation. SketchSam-
pler [6] translate sketches to more useful representation and
then sample density maps and lift the representation to 3D
by predicting the z-values of a density map. Given the re-
cent advancements in diffusion models, researchers have
also started adapting them to 3D and sketch models. LAS-
Diffusion [12] introduces a two-step diffusion process to
first diffuse the coarse occupancy grid and then refine the
sketch on the higher resolution by SDF-diffusion.

3. Method
We consider a single-view sketch of an object as input and
want to generate a full 3D representation. To achieve this,
we use three main components. (1) A DeepSDF auto-
decoder to represent our 3D shapes. (2) A view-agnostic en-
coder that maps a sketch from an unknown view into the la-
tent space of DeepSDF. This latent can serve as an effective
initial point for optimization. (3) A differentiable render-
ing module that allows for test-time optimization between
the 2D sketch and 3D shape. In particular, we first generate
consistent multi-view silhouettes of the input sketch and use
them to further optimize our latent vector. Figure 1 shows
an overview of our method.

3.1. Auto-Decoder

We use the popular DeepSDF auto-decoder formulation to
represent the 3D shape. Formally, let Dθ denote the auto-
decoder, c ∈ R3 a coordinate in 3D space, and zi a latent
vector for shape i. Then, the auto-decoder learns to map
3D coordinates to signed distance values. The surface is
then defined by the isosurface Dθ(·) = 0. In particular, we
use the variant Curriculum DeepSDF [4] which yields better
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Figure 1. Description of our architecture at inference. Input: single-view sketch. (1) We pass the sketch through our view-agnostic encoder
to get an initial latent. (2) We use the DeepSDF auto-decoder & differentiable sphere tracing to optimize the latent vector on multi-view
silhouettes. Once the final latent vector is found, we can obtain our shape by extracting SDF values on a grid structure and running the
marching cubes algorithm.

results for thin geometry.

3.2. View-Agnostic Encoder

In our setting, only a 2D sketch and no additional view in-
formation are provided. However, for free-hand sketches,
we cannot guarantee that they are drawn from a single pre-
defined view since (1) users might not be able to sketch a
shape perfectly from a specified view, and (2) views might
obscure some details important for the artists. Therefore,
we train a view-agnostic encoder into the DeepSDF latent
space. Let Eϕ be the encoder that maps the input sketch xi

to its corresponding latent vector zi. We train it to minimize
the L1 distance:

Lenc =

N∑
i=0

∑
v∈V

||Eϕ(xv
i )− zi||1

where V is the number of different views per shape and xv
i

represents the sketch input i from view v.

3.3. Differentiable Rendering

In general, the encoder already gives us a globally correct
shape. However, imperfections in the latent code and signed
distance values for sphere tracing can lead to missing sur-
faces - especially for thin geometry. Therefore, we want to
optimize our shape through differentiable rendering to fix
the aforementioned issue at inference. Our goal is to get a
silhouette map of the sketch. We start with our latent vector
z0 = Eϕ(x). We run sphere tracing and store points p with
corresponding minimal distance s to the surface for every
ray. Afterwards, we calculate the normal n = dDθ(z,p)

dx . If
s is negative, we know that there is a surface along the ray.
If s is positive but within an threshold to the zero-crossing,
we project points to the surface by taking a step into the
negative normal direction p′ = p − n and then backproject
the points to the image coordinates. This process can lead to
noise due to imperfect normal estimates, which we alleviate

by running a Gaussian blur filter on the image and remov-
ing values below a threshold ϵ. The result of this process
are silhouettes S that can be seen as ground-truth data for
the following optimization. This process can be applied to
arbitrary views, which are consistent with one another and
make optimization more stable. Figure 2 depicts the multi-
view silhouettes of a specific sketch input.

Figure 2. Multi-View silhouettes of the sketch on the left.

Once we calculate the silhouette map S from different
views, we can use differentiable rendering to optimize the
latent vector z of the test object.

Lsil = Smax(0,Sr − ϵ) + (1− S)max(0,−(Sr − ϵ))

where ϵ the threshold value for hitting the surface and Sr the
silhouette rendered via differentiable sphere tracing. The
loss function allows the generation of missing surfaces and
the removal of undesired ones.

Additionally, we need to regularize the latent vector to
stay in valid latent space. We assume that the initial pre-
dicted latent vector z0 is already a good guess and that
the test-time optimization should not deviate too far from
it. Thus, our reguarization loss is the L1 distance with
Lreg = ||z0−zn||1. Our final loss for test-time optimization
then becomes

L =

K∑
k=1

Lk
sil + Lreg

where K is the number of different views of the silhouette.

4. Results
Dataset. ShapeNetCore is a subset of the full ShapeNet

[2] dataset with 3D shapes and manually verified cate-



gory and alignment annotations. We base our experi-
ments on the chair class and create a train/val/test split
with 4096/128/256 shapes. To obtain training data from the
shapes, we render the chairs from multiple views and extract
sketches by running a canny edge detector [1]. Additionally,
to generate more training data, we traverse the DeepSDF
latent space to generate new valid chairs with valid latent
vectors. We end up with 400k unique latent vectors and
800k sketches for training. Figure 3 shows the sketches and
how the latent traversal affects the chairs. To evaluate our
method on hand-drawn sketches, we follow [5] and create a
hand-drawn sketch dataset for the test set.

Figure 3. Traversal Dataset. Interpolations between the seed chair
(left) and the target chairs (bottom) to create new chairs (top).

Baseline. We train a siamese neural network [9] using
triplet loss [3] on the sketches to obtain a retrieval baseline
for our method. At inference, we encode the sketch into the
embedding space and retrieve the ground truth (GT) mesh
of the closest shape in the embedding space.

Evaluation Metrics. We follow standard evaluation
metrics from previous works [6, 7, 12]. We use four dif-
ferent metrics to evaluate our method: Chamfer Distance
(CD), Earth Mover Distance (EMD), Fréchet inception dis-
tance (FID), and CLIPScore [12]. For CD and EMD, we
sample 30k and 4k points, respectively, from the GT and re-
constructed mesh. The units of CD and EMD are 10−3 and
10−2. To evaluate FID and CLIPScore, we render from 10
different views and compare the ground truth sketch image
with the rendered sketch image.

Training Details. Curriculum DeepSDF is trained for
17h 23m 33s on NVIDIA GeForce RTX 2080 Ti. The pre-
trained ResNet18 encoder [8] is trained for 5h 57m 14s on
NVIDIA GeForce RTX 2080 Ti.

4.1. Synthetic Sketch Reconstruction

Method CD↓ EMD↓ FID↓ CLIPScore↑
Retrieval 10.43 11.23 33.82 93.96
Encoder 4.40 8.17 46.53 93.99

+ Silhouette 4.17 8.30 46.78 94.10
+ Global 4.17 8.31 46.68 94.08

Table 1. Quantitative evaluation for synthetic sketches.

Figure 4. Qualitative results for synthetic sketches.

We evaluate how well our method can generate 3D shapes
based on the synthetic sketches used during training. In
the qualitative results 4, we observe that both our retrieval
baseline and the encoder can reconstruct the input sketches
well. Using differentiable rendering allows us to recover
some of the missing geometry. Quantitative results are
shown in Table 1. Our encoder demonstrates superior per-
formance over the retrieval baseline on metrics such as CD
and EMD, indicating enhanced preservation of global struc-
ture and improved generalization to novel shapes. Despite
this, there is no noticeable improvement in CLIPScore, im-
plying that the encoder consistently generates perceptually
coherent shapes. However, it is worth noting that the re-
trieval baseline outperforms our encoder on FID. We hy-
pothesize that this could be attributed to the fact that our re-
trieval process retrieves GT meshes, consequently leading
to the extracted sketches aligning closely with the distribu-
tion of ”sketches” used for evaluation. As a result, FID is
more sensitive to this alignment than CLIP. While we ob-
serve qualitative differences, differentiable rendering based
on silhouettes does not improve upon the encoder quantita-
tively. We attribute this to two main reasons: (1) For the
majority of the chairs, the encoder already gives good re-
sults close to the ground truth, leading to no performance
gains. (2) Metrics like CD and EMD do not give large im-
portance to small or thin structures for which silhouette loss
was designed. We also experiment with a global loss, which
calculates the distance between the sketch and rendered im-



ages, based on our encoder. However, this does not lead to
any performance gains.

Figure 5. Qualitative results for hand-drawn sketches.

Method CD↓ EMD↓ FID↓ CLIPScore↑
Retrieval 14.29 13.41 37.14 92.82
Encoder 8.99 11.42 50.04 92.86

+ Silhouette 8.59 11.21 49.60 93.14
+ Global 8.60 11.23 49.64 93.12

Table 2. Quantitative evaluation for hand-drawn sketches.

4.2. Free Hand-Drawn Reconstruction

We evaluate our method on hand-drawn sketches to simu-
late real-world use cases. Quantitative results can be found
in Table 2, and qualitative results in Figure 5. In general, we
observe a large domain gap between synthetic and hand-
drawn sketches, which is reflected in the drop in perfor-
mance when comparing the results of the previous section.
Results behave similarly to synthetic sketches. However,
incorporating differentiable rendering can enhance the per-
formance of the encoder baseline by a small margin. This
improvement stems from the increased potential for refine-
ment, allowing the silhouette loss to effectively guide the
encoder towards a closer alignment with the ground truth.

4.3. Multi-View Robustness

A crucial characteristic of our encoder is that we train it
to be view-agnostic. Figure 6 shows qualitative results of

Figure 6. Qualitative evaluation of view robustness.

this property. While different views may result in approxi-
mately similar shapes, achieving perfect consistency across
all views remains unattainable. Due to the inherent ambigu-
ity in sketches, it remains uncertain whether perfect view-
robustness is feasible.

Figure 7. Real-time editing of the silhouettes. From left to right,
you see the input sketch and the initial reconstruction of the sketch.
Since the bottom of the chair is not correct, we edit the silhouette
(from multiple views) and run differentiable rendering. The final
output fixes the bottom of the chair.

4.4. Interactive Editing

Our approach allows for live editing by manipulating the
silhouettes after the initial shape has been generated. We
accomplish this by developing an interactive painting tool
that allows artists to paint over the silhouette to either add
or remove geometry or introduce new features not originally
present. The modified silhouette can be utilized for differ-
entiable rendering. This editing functionality is applicable
for both single and multiple views; see Figure 7.

5. Conclusion
We studied the task of 3D reconstruction from 2D sketches.
Our approach, based on encoding a sketch into the
DeepSDF latent space and optimizing the latent during in-
ference, presents a flexible way to interact with the shape
via live editing. While our encoder significantly outper-
forms the retrieval baseline, the differentiable rendering
module can only further improve the shape in a few cir-
cumstances where the global structure is preserved and thin
structures are missing.

We identify the following areas of future work. Shape
Diversity: Currently, our method is restricted to only chairs;
enabling training on multiple types remains open for further
exploration. Domain Gap: Due to the diversity of hand-
drawn sketches and the lack of high-quality datasets, it re-
mains unclear how to close the gap between hand-drawn
and synthetically generated sketches.
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